Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production.
نویسندگان
چکیده
The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
منابع مشابه
The effect of resistance exercise on oxidative stress in cardiac and skeletal muscle tissues of streptozotocin-induced diabetic rats
Abstract Background and Objective: It has been shown that oxidative stress increases in diabetes and it has an important role in its development and subsequent complications. Thus, the aim of this study was to investigate the effect of acute resistance exercise on oxidative stress in skeletal muscle and cardiac tissues of streptozotocin-induced diabetic rats. Materials and Methods: Twenty male ...
متن کاملThe effect of phytochemical compounds on indicators of oxidative stress, inflammation and skeletal muscle damage caused by physical activity
Physical activities are associated with increased production of reactive oxygen species. The production of reactive oxygen species is dependent of the intensity, duration and type of activity. Although the physiological amounts of reactive oxygen species are necessary to regulate cell reactions, their excessive production can cause numerous damages to the structure and function of cells and wea...
متن کاملThe Effect of Aerobic Training and Tribulus Terrestris Extract on Muscle Atrophy Indices and Oxidant-Pro-Oxidant Balance in Extensor Digitorum Longus Muscles of Type 2 Diabetic Desert Rats
Background & Aims: Performing normal daily activities requires sufficient muscle size and strength, and atrophy has a negative effect on the overall quality of life; So that the decrease in skeletal muscle mass leads to a decrease in human performance, long-term health and low quality of life. Diabetes is associated with the development of secondary complications in various organs, especially s...
متن کاملImpact of Oxidative Stress on Exercising Skeletal Muscle
It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced du...
متن کاملCatechins attenuate eccentric exercise-induced inflammation and loss of force production in muscle in senescence-accelerated mice.
Catechins have a great variety of biological actions. We evaluated the potential benefits of catechin ingestion on muscle contractile properties, oxidative stress, and inflammation following downhill running, which is a typical eccentric exercise, in senescence-accelerated prone mice (SAMP). Downhill running (13 m/min for 60 min; 16° decline) induced a greater decrease in the contractile force ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2008